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Strong Atiyah Conjecture

Definition
Let G be a discrete torsion free group and L(G) ⊆ B(l2(G)) its left regular
representation, then for any matrix A ∈ MN(C[G ]), viewed as an operator
in MN(L(G)), we can define its rank

rankA := (TrN ⊗τ)pim A ∈ [0,N],

where τ is the trace on L(G) given by the identity of G , TrN is the
unormalized trace of MN(C), and pim A is the projection onto the closure
of the image of A.
A torsion free group G satisfies the strong Atiyah conjecture if for any
matrix A ∈ MN (CG), its rank

rankA ∈ Z.
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Strong Atiyah Conjecture

Remarks
1 In general, G is not necessary to be torsion free and then Z need to

be modified according to some quantity of G .
2 This is one of the various formulations of the Atiyah conjecture,

which arose in the work of Atiyah, Elliptic operators and compact
groups, 1974. It asks whether some analytic L2-Betti numbers are
always rational numbers for certain Riemannian manifolds.

3 A big class of groups, included free groups Fn, is known to satisfy the
strong Atiyah conjecture.

4 Actually, we can generally consider a tuple of operators in a finite von
Neumann algebra.
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Strong Atiyah Property
Definition (D. Shlyakhtenko and P. Skoufranis, 2015)
Let X = (X1, . . . ,Xn) be a tuple of operators in a tracial W ∗-probability
space (M, τ) (namely, M is a finite von Neumann algebra with a faithful
normal tracial state τ : M → C), if for any matrix A ∈ MN(C 〈x1, . . . , xn〉),
the rank (defined as before) of its evaluation A(X )

rankA(X ) ∈ Z,

then we say X satisfies the strong Atiyah property.

Remarks
1 From the definition, rankA(X ) can be any real number in [0,N].
2 The generators of free group von Neumann algebras satisfy the strong

Atiyah property (Linnell, 1993).
3 A tuple of non-atomic, freely independent operators satisfies the

strong Atiyah property (Shlyakhtenko and Skoufranis, 2015).
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Inner Rank
Definition
Let R be a unital ring. For any non-zero A ∈ Mm,n(R), the inner rank of A
is defined as the least positive integer r such that there are matrices
P ∈ Mm,r (A), Q ∈ Mr ,n(A) satisfying a factorization

A = PQ.

We denote this number by ρ(A).
In particular, if ρ(A) = min{m, n}, namely, if there is no such factorization
with r < min{m, n}, then A is called a full matrix over R.

Example:

A =
(
y2 yxy
yxy yx2y

)
=
(
y
yx

)(
y xy

)
has inner rank ρ(A) = 1 over C 〈x , y〉.
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Inner Rank
Definition
Let R be a unital ring. For any non-zero A ∈ Mm,n(R), the inner rank of A
is defined as the least positive integer r such that there are matrices
P ∈ Mm,r (A), Q ∈ Mr ,n(A) satisfying a factorization

A = PQ.

We denote this number by ρ(A).
In particular, if ρ(A) = min{m, n}, namely, if there is no such factorization
with r < min{m, n}, then A is called a full matrix over R.

Remarks
1 It is a natural generalization of the notion of rank to noncommutative

ring.
2 If R = C, then the inner rank is the matrix rank and a full matrix is

non-singular matrix.
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Rational Closure
Definition
Let ϕ : C 〈x1, . . . , xn〉 → A be a homomorphism into a unital algebra A.
The rational closure of C 〈x1, . . . , xn〉 with respect to ϕ is the set of all
elements given by

uϕ(A)−1v ,

where A ∈ Mk(C 〈x1, . . . , xn〉) has its image invertible in Mk(A) under
matricial amplifications of ϕ and u ∈ M1,k(C), v ∈ Mk,1(C) are
scalar-valued row and column vectors respectively.

Remarks
1 A rational closure R is always a subalgebra of A which contains the

image ϕ(C 〈x1, . . . , xn〉). Moreover, R is stable with respect to taking
inverses, i.e., if r ∈ R and r is invertible in A, then r−1 ∈ R.

2 If ϕ is the evaluation map evX induced by a tuple of operators X ,
then the rational closure is the “evaluation of rational functions”.
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Rational Closure

Rational closure of a tuple of operators X = (X1, . . . , Xn)
Let A(M) be the ∗-algebra of closed and densely defined operators
affiliated with M, and evX : C 〈x1, . . . , xn〉 → M ⊆ A(M) the evaluation
map at tuple X . Then the rational closure R with respect to
evX : C 〈x1, . . . , xn〉 → A(M) is a subalgebra of A(M) s.t. r ∈ R is
invertible in A(M) =⇒ r ∈ R. Hence, for example, given
p1, p2 ∈ C 〈x1, . . . , xn〉,

(p1(X )− p2(X )−1)−1 ∈ A(M) =⇒ R 3(p1(X )− p2(X )−1)−1

∼ (p1 − p−1
2 )−1(X ).
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Strong Atiyah Property

Theorem (T. Mai, R. Speicher, Y., 2018)
Let X = (X1, . . . ,Xn) be a tuple of operators in a tracial W ∗-probability
space (M, τ), and R is the rational closure of C 〈x1, . . . , xn〉 with respect
to evaluation map evX : C 〈x1, . . . , xn〉 → A(M). Then the followings are
equivalent:

1 For any N ∈ N, A ∈ MN(C 〈x1, . . . , xn〉): if A(X ) is full over R, then
A(X ) is invertible as an unbounded operator in MN(A(M)).

2 For any N ∈ N, A ∈ MN(C 〈x1, . . . , xn〉):

rankA(X ) = ρR(A(X )).

3 The rational closure R is a division ring, i.e., each element in R is
invertible in A(M).

4 X satisfies the strong Atiyah property, i.e., for any N ∈ N,
A ∈ MN(C 〈x1, . . . , xn〉), we have rankA(X ) ∈ N.
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Strong Atiyah Property
1 For any N ∈ N, A ∈ MN(C 〈x1, . . . , xn〉): if A(X ) is full over R, then

A(X ) is invertible as an unbounded operator in MN(A(M)).
2 For any N ∈ N, A ∈ MN(C 〈x1, . . . , xn〉): rankA(X ) = ρR(A(X )).
3 The rational closure R is a division ring, i.e., each element in R is

invertible in A(M).
4 X satisfies the strong Atiyah property, i.e., for any N ∈ N,

A ∈ MN(C 〈x1, . . . , xn〉), we have rankA(X ) ∈ N.

Remarks
1 Property (2) is a special case of Property (1) since rankA(X ) = N iff

A(X ) is invertible in A(M).
2 The equivalence of Property (3) and strong Atiyah conjecture is

known for torsionfree groups (Linnell, 1992; Schick, 1999).
3 In Property (3), the quantity ρR(A(X )) on the right hand side is

actually algebraic.
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Strong Atiyah Property

Theorem (T. Mai, R. Speicher, Y., 2018)
Let X = (X1, . . . ,Xn) be a tuple of operators in a tracial W ∗-probability
space (M, τ). Then the followings are equivalent:

1 For any N ∈ N, A ∈ MN(C 〈x1, . . . , xn〉): if A is linear and full, then
A(X ) is invertible as an unbounded operator in MN(A(M)).

2 For any N ∈ N, A ∈ MN(C 〈x1, . . . , xn〉): if A is full, then A(X ) is
invertible as an unbounded operator in MN(A(M)).

3 For any N ∈ N, A ∈ MN(C 〈x1, . . . , xn〉): rankA(X ) = ρ(A).
4 The set of all nc rational functions, C (<x1, . . . , xn )>, can be embedded

into A(M) by the evaluation at tuple X.

In Property (4), C (<x1, . . . , xn )>, called free field, is the unique
universal smallest division ring containing the ring of
non-commutative polynomials (Amitsur 1966; Cohn 1971).
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Strong Atiyah Property

Theorem (T. Mai, R. Speicher, Y., 2018)
Let X = (X1, . . . ,Xn) be a tuple of operators in a tracial W ∗-probability
space (M, τ). Then the followings are equivalent:

1 For any N ∈ N, A ∈ MN(C 〈x1, . . . , xn〉): if A is linear and full, then
A(X ) is invertible as an unbounded operator in MN(A(M)).

2 For any N ∈ N, A ∈ MN(C 〈x1, . . . , xn〉): if A is full, then A(X ) is
invertible as an unbounded operator in MN(A(M)).

3 For any N ∈ N, A ∈ MN(C 〈x1, . . . , xn〉): rankA(X ) = ρ(A).
4 The set of all nc rational functions, C (<x1, . . . , xn )>, can be embedded

into A(M) by the evaluation at tuple X.

In this case, the rational closure w.r.t evX : C 〈x1, . . . , xn〉 → A(M) is
actually given by the evaluation of all rational functions at tuple X .
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Strong Atiyah Property
Theorem (T. Mai, R. Speicher, Y., 2018)
Let X = (X1, . . . ,Xn) be a tuple of operators in a tracial W ∗-probability
space (M, τ). Then the followings are equivalent:

1 For any N ∈ N, A ∈ MN(C 〈x1, . . . , xn〉): if A is linear and full, then
A(X ) is invertible as an unbounded operator in MN(A(M)).

2 For any N ∈ N, A ∈ MN(C 〈x1, . . . , xn〉): if A is full, then A(X ) is
invertible as an unbounded operator in MN(A(M)).

3 For any N ∈ N, A ∈ MN(C 〈x1, . . . , xn〉): rankA(X ) = ρ(A).
4 The set of all nc rational functions, C (<x1, . . . , xn )>, can be embedded

into A(M) by the evaluation at tuple X.

In Property (3), ρ(A) denotes the inner rank of A over C 〈x1, . . . , xn〉,
which only depends on the matrix A. As ρ(A) ∈ N by the definition,
these equivalent properties are stronger than the strong Atiyah
property and its equivalences in the previous theorem.
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Strong Atiyah Property

Theorem (T. Mai, R. Speicher, Y., 2018)
Let X = (X1, . . . ,Xn) be a tuple of operators in a tracial W ∗-probability
space (M, τ). Then the followings are equivalent:

1 For any N ∈ N, A ∈ MN(C 〈x1, . . . , xn〉): if A is linear and full, then
A(X ) is invertible as an unbounded operator in MN(A(M)).

2 For any N ∈ N, A ∈ MN(C 〈x1, . . . , xn〉): if A is full, then A(X ) is
invertible as an unbounded operator in MN(A(M)).

3 For any N ∈ N, A ∈ MN(C 〈x1, . . . , xn〉): rankA(X ) = ρ(A).
4 The set of all nc rational functions, C (<x1, . . . , xn )>, can be embedded

into A(M) by the evaluation at tuple X.

Property (1) can be proved under some regular assumptions for tuple
X = (X1, . . . ,Xn): finite free Fisher information Φ∗(X1, . . . ,Xn) <∞
=⇒ maximal free entropy dimension δ?(X1, . . . ,Xn) = n
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Absence of Zero Divisors/Atoms
Theorem (T. Mai, R. Speicher, Y., 2018)

Suppose that

A = A0 + A1x1 + · · ·+ Anxn ∈ MN(C 〈x1, . . . , xn〉), Ai ∈ M(C)

is a full matrix;
Suppose that X = (X1, · · · ,Xn) is a tuple of selfadjoint nc random
variables in some tracial W ∗-probability space (M, τ) s.t.

δ?(X1, . . . ,Xn) = n;

then the evaluation A(X ) has zero divisors in MN(vN(X )).

Remarks
1 A(X ) is invertible in MN(A(vN(X ))) since the projection

pker A(X) = 0.
2 If A is selfadjoint, then the distribution µA(X) has no atoms.
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Inner Rank, Atoms and Random Matrices

Let X , Y be freely independent
semicircular random variables
Let

A =
(
y2 yxy
yxy yx2y

)
then

rankA(X ,Y ) = ρ(A) = 1 < 2

=⇒ µA(X)({0}) = 1
2

=⇒
#{zero eigenvalues of A(N)}

N
−→

N→∞

1
2

Let X(N), Y(N) be GUE random
matrices with N = 1000
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Inner Rank, Atoms and Random Matrices

Let X , Y be freely independent
semicircular random variables
Let

A =
(
y2 yxy
yxy yx2y

)
then

rankA(X ,Y ) = ρ(A) = 1

=⇒ µA(X)({0}) = 1
2

=⇒
#{zero eigenvalues of A(N)}

N
−→

N→∞

1
2

Let X(N), Y(N) be GUE random
matrices with N = 1000

Sheng Yin (Saarland University) Rational Functions and Atiyah Property July 23, 2018 14 / 17



Inner Rank, Atoms and Random Matrices

Let X , Y be freely independent
semicircular random variables
Let

A =
(
y2 yxy
yxy yx2y

)
, λ ∈ R, λ 6= 0

then

rank(λ− A(X ,Y ))
= ρ(λ− A) = 2

=⇒ µA(X)({λ}) = 0

=⇒
#{λ eigenvalues of A(N)}

N
−→

N→∞
0

Let X(N), Y(N) be GUE random
matrices with N = 1000
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Rational functions, Atoms and Random Matrices

Let X , Y be freely independent
semicircular random variables
Let

r = (x − y−1)−1 6= 0

in C (<x1, . . . , xn )>, then µr(X ,Y ) is
non-vanishing and has no atoms.

Let X(N), Y(N) be GUE random
matrices with N = 1000
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Thank you!
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