Non-commutative Rational Functions and Atiyah Property

Sheng Yin joint work with Tobias Mai and Roland Speicher

Saarland University

IWOTA, Shanghai July 23, 2018

Supported by the ERC Advanced Grant "Non-commutative distributions in free probability"

European Research Council Established by the European Commission

Sheng Yin (Saarland University)

Rational Functions and Atiyah Property

July 23, 2018 1 / 17

∃ ▶ ∢

Definition

Let G be a discrete torsion free group and $L(G) \subseteq B(l^2(G))$ its left regular representation, then for any matrix $A \in M_N(\mathbb{C}[G])$, viewed as an operator in $M_N(L(G))$, we can define its rank

$$\operatorname{\mathsf{rank}} A := (\operatorname{\mathsf{Tr}}_N \otimes \tau) p_{\overline{\operatorname{\mathsf{im}}} A} \in [0, N],$$

where τ is the trace on L(G) given by the identity of G, Tr_N is the unormalized trace of $M_N(\mathbb{C})$, and $p_{\overline{\operatorname{im} A}}$ is the projection onto the closure of the image of A.

A torsion free group G satisfies the *strong Atiyah conjecture* if for any matrix $A \in M_N(\mathbb{C}G)$, its rank

$$\operatorname{rank} A \in \mathbb{Z}.$$

- In general, G is not necessary to be torsion free and then \mathbb{Z} need to be modified according to some quantity of G.
- This is one of the various formulations of the Atiyah conjecture, which arose in the work of Atiyah, *Elliptic operators and compact* groups, 1974. It asks whether some analytic L²-Betti numbers are always rational numbers for certain Riemannian manifolds.
- A big class of groups, included free groups \mathbb{F}_n , is known to satisfy the strong Atiyah conjecture.
- Actually, we can generally consider a tuple of operators in a finite von Neumann algebra.

Definition (D. Shlyakhtenko and P. Skoufranis, 2015)

Let $X = (X_1, \ldots, X_n)$ be a tuple of operators in a tracial W^* -probability space (M, τ) (namely, M is a finite von Neumann algebra with a faithful normal tracial state $\tau : M \to \mathbb{C}$), if for any matrix $A \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$, the rank (defined as before) of its evaluation A(X)

 $\operatorname{rank} A(X) \in \mathbb{Z},$

then we say X satisfies the strong Atiyah property.

- From the definition, rank A(X) can be any real number in [0, N].
- The generators of free group von Neumann algebras satisfy the strong Atiyah property (Linnell, 1993).
- A tuple of non-atomic, freely independent operators satisfies the strong Atiyah property (Shlyakhtenko and Skoufranis, 2015).

Inner Rank

Definition

Let *R* be a unital ring. For any non-zero $A \in M_{m,n}(R)$, the *inner rank* of *A* is defined as the least positive integer *r* such that there are matrices $P \in M_{m,r}(A)$, $Q \in M_{r,n}(A)$ satisfying a factorization

$$A = PQ.$$

We denote this number by $\rho(A)$. In particular, if $\rho(A) = \min\{m, n\}$, namely, if there is no such factorization with $r < \min\{m, n\}$, then A is called a *full* matrix over R.

Example:

$$A = \begin{pmatrix} y^2 & yxy \\ yxy & yx^2y \end{pmatrix} = \begin{pmatrix} y \\ yx \end{pmatrix} \begin{pmatrix} y & xy \end{pmatrix}$$

has inner rank $\rho(A) = 1$ over $\mathbb{C} \langle x, y \rangle$.

Inner Rank

Definition

Let *R* be a unital ring. For any non-zero $A \in M_{m,n}(R)$, the *inner rank* of *A* is defined as the least positive integer *r* such that there are matrices $P \in M_{m,r}(A)$, $Q \in M_{r,n}(A)$ satisfying a factorization

$$A = PQ.$$

We denote this number by $\rho(A)$. In particular, if $\rho(A) = \min\{m, n\}$, namely, if there is no such factorization with $r < \min\{m, n\}$, then A is called a *full* matrix over R.

- It is a natural generalization of the notion of rank to noncommutative ring.
- ② If $R = \mathbb{C}$, then the inner rank is the matrix rank and a full matrix is non-singular matrix.

Rational Closure

Definition

Let $\varphi : \mathbb{C} \langle x_1, \ldots, x_n \rangle \to \mathcal{A}$ be a homomorphism into a unital algebra \mathcal{A} . The rational closure of $\mathbb{C} \langle x_1, \ldots, x_n \rangle$ with respect to φ is the set of all elements given by

$$u\varphi(A)^{-1}v,$$

where $A \in M_k(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$ has its image invertible in $M_k(\mathcal{A})$ under matricial amplifications of φ and $u \in M_{1,k}(\mathbb{C})$, $v \in M_{k,1}(\mathbb{C})$ are scalar-valued row and column vectors respectively.

Remarks

A rational closure R is always a subalgebra of A which contains the image φ(ℂ ⟨x₁,..., x_n⟩). Moreover, R is stable with respect to taking inverses, i.e., if r ∈ R and r is invertible in A, then r⁻¹ ∈ R.

If φ is the evaluation map ev_X induced by a tuple of operators X, then the rational closure is the "evaluation of rational functions".

Rational closure of a tuple of operators $X = (X_1, \ldots, X_n)$

Let $\mathcal{A}(M)$ be the *-algebra of closed and densely defined operators affiliated with M, and $ev_X : \mathbb{C} \langle x_1, \ldots, x_n \rangle \to M \subseteq \mathcal{A}(M)$ the evaluation map at tuple X. Then the rational closure R with respect to $ev_X : \mathbb{C} \langle x_1, \ldots, x_n \rangle \to \mathcal{A}(M)$ is a subalgebra of $\mathcal{A}(M)$ s.t. $r \in R$ is invertible in $\mathcal{A}(M) \implies r \in R$. Hence, for example, given $p_1, p_2 \in \mathbb{C} \langle x_1, \ldots, x_n \rangle$,

$$(p_1(X) - p_2(X)^{-1})^{-1} \in \mathcal{A}(M) \implies R \ni (p_1(X) - p_2(X)^{-1})^{-1}$$

 $\sim (p_1 - p_2^{-1})^{-1}(X).$

Theorem (T. Mai, R. Speicher, Y., 2018)

Let $X = (X_1, ..., X_n)$ be a tuple of operators in a tracial W^* -probability space (M, τ) , and R is the rational closure of $\mathbb{C} \langle x_1, ..., x_n \rangle$ with respect to evaluation map $ev_X : \mathbb{C} \langle x_1, ..., x_n \rangle \to \mathcal{A}(M)$. Then the followings are equivalent:

- For any N ∈ N, A ∈ M_N(C ⟨x₁,...,x_n⟩): if A(X) is full over R, then A(X) is invertible as an unbounded operator in M_N(A(M)).
- **2** For any $N \in \mathbb{N}$, $A \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$:

$$\operatorname{rank} A(X) = \rho_R(A(X)).$$

The rational closure R is a division ring, i.e., each element in R is invertible in A(M).

 X satisfies the strong Atiyah property, i.e., for any N ∈ N, A ∈ M_N(C ⟨x₁,...,x_n⟩), we have rank A(X) ∈ N.

< /i>
< /i>
< /i>
< /i>
< /i>

- For any $N \in \mathbb{N}$, $A \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$: if A(X) is full over R, then A(X) is invertible as an unbounded operator in $M_N(\mathcal{A}(M))$.
- 3 For any $N \in \mathbb{N}$, $A \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$: rank $A(X) = \rho_R(A(X))$.
- **③** The rational closure R is a division ring, i.e., each element in R is invertible in $\mathcal{A}(M)$.
- X satisfies the strong Atiyah property, i.e., for any N ∈ N, A ∈ M_N(C ⟨x₁,...,x_n⟩), we have rank A(X) ∈ N.

- Property (2) is a special case of Property (1) since rank A(X) = N iff A(X) is invertible in A(M).
- The equivalence of Property (3) and strong Atiyah conjecture is known for torsionfree groups (Linnell, 1992; Schick, 1999).
- So In Property (3), the quantity $\rho_R(A(X))$ on the right hand side is actually algebraic.

Theorem (T. Mai, R. Speicher, Y., 2018)

Let $X = (X_1, ..., X_n)$ be a tuple of operators in a tracial W^* -probability space (M, τ) . Then the followings are equivalent:

- For any $N \in \mathbb{N}$, $A \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$: if A is linear and full, then A(X) is invertible as an unbounded operator in $M_N(\mathcal{A}(M))$.
- ② For any $N \in \mathbb{N}$, $A \in M_N(\mathbb{C} \langle x_1, ..., x_n \rangle)$: if A is full, then A(X) is invertible as an unbounded operator in $M_N(\mathcal{A}(M))$.
- **3** For any $N \in \mathbb{N}$, $A \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$: rank $A(X) = \rho(A)$.
- The set of all nc rational functions, C {x₁,...,x_n}, can be embedded into A(M) by the evaluation at tuple X.
 - In Property (4), C (x₁,..., x_n), called *free field*, is the unique universal smallest division ring containing the ring of non-commutative polynomials (Amitsur 1966; Cohn 1971).

ヘロト 人間ト 人団ト 人団ト

Theorem (T. Mai, R. Speicher, Y., 2018)

Let $X = (X_1, ..., X_n)$ be a tuple of operators in a tracial W^* -probability space (M, τ) . Then the followings are equivalent:

- For any $N \in \mathbb{N}$, $A \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$: if A is linear and full, then A(X) is invertible as an unbounded operator in $M_N(\mathcal{A}(M))$.
- **②** For any $N \in \mathbb{N}$, $A \in M_N(\mathbb{C} \langle x_1, ..., x_n \rangle)$: if A is full, then A(X) is invertible as an unbounded operator in $M_N(\mathcal{A}(M))$.
- **3** For any $N \in \mathbb{N}$, $A \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$: rank $A(X) = \rho(A)$.
- The set of all nc rational functions, C {x₁,...,x_n}, can be embedded into A(M) by the evaluation at tuple X.

In this case, the rational closure w.r.t ev_X : C ⟨x₁,...,x_n⟩ → A(M) is actually given by the evaluation of all rational functions at tuple X.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (T. Mai, R. Speicher, Y., 2018)

Let $X = (X_1, ..., X_n)$ be a tuple of operators in a tracial W^* -probability space (M, τ) . Then the followings are equivalent:

- For any $N \in \mathbb{N}$, $A \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$: if A is linear and full, then A(X) is invertible as an unbounded operator in $M_N(\mathcal{A}(M))$.
- **②** For any $N \in \mathbb{N}$, $A \in M_N(\mathbb{C} \langle x_1, ..., x_n \rangle)$: if A is full, then A(X) is invertible as an unbounded operator in $M_N(\mathcal{A}(M))$.
- **3** For any $N \in \mathbb{N}$, $A \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$: rank $A(X) = \rho(A)$.
- The set of all nc rational functions, C (x₁,...,x_n), can be embedded into A(M) by the evaluation at tuple X.
 - In Property (3), ρ(A) denotes the inner rank of A over C ⟨x₁,...,x_n⟩, which only depends on the matrix A. As ρ(A) ∈ N by the definition, these equivalent properties are stronger than the strong Atiyah property and its equivalences in the previous theorem.

Theorem (T. Mai, R. Speicher, Y., 2018)

Let $X = (X_1, ..., X_n)$ be a tuple of operators in a tracial W^* -probability space (M, τ) . Then the followings are equivalent:

- For any $N \in \mathbb{N}$, $A \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$: if A is linear and full, then A(X) is invertible as an unbounded operator in $M_N(\mathcal{A}(M))$.
- **②** For any $N \in \mathbb{N}$, $A \in M_N(\mathbb{C} \langle x_1, ..., x_n \rangle)$: if A is full, then A(X) is invertible as an unbounded operator in $M_N(\mathcal{A}(M))$.
- **3** For any $N \in \mathbb{N}$, $A \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle)$: rank $A(X) = \rho(A)$.
- The set of all nc rational functions, C {x₁,...,x_n}, can be embedded into A(M) by the evaluation at tuple X.

• Property (1) can be proved under some regular assumptions for tuple $X = (X_1, \ldots, X_n)$: finite free Fisher information $\Phi^*(X_1, \ldots, X_n) < \infty$ \implies maximal free entropy dimension $\delta^*(X_1, \ldots, X_n) = n$

ヘロト 人間ト 人団ト 人団ト

Absence of Zero Divisors/Atoms

Theorem (T. Mai, R. Speicher, Y., 2018)

• Suppose that

$$A = A_0 + A_1 x_1 + \cdots + A_n x_n \in M_N(\mathbb{C} \langle x_1, \ldots, x_n \rangle), \ A_i \in M(\mathbb{C})$$

is a full matrix;

Suppose that X = (X₁, · · · , X_n) is a tuple of selfadjoint nc random variables in some tracial W*-probability space (M, τ) s.t.

$$\delta^{\star}(X_1,\ldots,X_n)=n;$$

12/17

then the evaluation A(X) has zero divisors in $M_N(vN(X))$.

Remarks

A(X) is invertible in M_N(A(vN(X))) since the projection p_{ker A(X)} = 0.

2 If A is selfadjoint, then the distribution $\mu_{A(X)}$ has no atoms. Sheng Yin (Saarland University) Rational Functions and Atiyah Property July 23, 2018

Inner Rank, Atoms and Random Matrices

Let *X*, *Y* be freely independent semicircular random variables

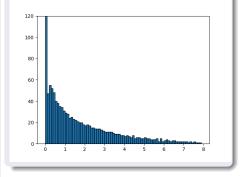
Let

$$A = \begin{pmatrix} y^2 & yxy \\ yxy & yx^2y \end{pmatrix}$$

then

$$\operatorname{rank} A(X, Y) = \rho(A) = 1 < 2$$
$$\implies \mu_{A(X)}(\{0\}) = \frac{1}{2}$$
$$\implies \frac{\#\{\operatorname{zero \ eigenvalues \ of \ } A_{(N)}\}}{N}$$
$$\stackrel{\longrightarrow}{\longrightarrow} \frac{1}{2}$$

Let $X_{(N)}$, $Y_{(N)}$ be GUE random matrices with N = 1000



Inner Rank, Atoms and Random Matrices

Let *X*, *Y* be freely independent semicircular random variables

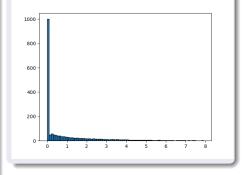
Let

$$A = \begin{pmatrix} y^2 & yxy \\ yxy & yx^2y \end{pmatrix}$$

then

$$\operatorname{rank} A(X, Y) = \rho(A) = 1$$
$$\implies \mu_{A(X)}(\{0\}) = \frac{1}{2}$$
$$\implies \frac{\#\{\operatorname{zero \ eigenvalues \ of \ } A_{(N)}\}}{N}$$
$$\stackrel{\longrightarrow}{\longrightarrow} \frac{1}{2}$$

Let $X_{(N)}$, $Y_{(N)}$ be GUE random matrices with N = 1000



July 23, 2018 14 / 17

Inner Rank, Atoms and Random Matrices

Let *X*, *Y* be freely independent semicircular random variables

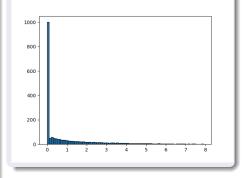
Let

$$\mathsf{A} = \begin{pmatrix} y^2 & yxy \\ yxy & yx^2y \end{pmatrix}, \ \lambda \in \mathbb{R}, \lambda \neq \mathsf{0}$$

then

$$\operatorname{rank}(\lambda - A(X, Y)) = \rho(\lambda - A) = 2$$
$$\implies \mu_{A(X)}(\{\lambda\}) = 0$$
$$\implies \frac{\#\{\lambda \text{ eigenvalues of } A_{(N)}\}}{N}$$
$$\xrightarrow[N \to \infty]{} 0$$

Let $X_{(N)}$, $Y_{(N)}$ be GUE random matrices with N = 1000



Sheng Yin (Saarland University)

Rational Functions and Atiyah Property

July 23, 2018 15 / 17

Rational functions, Atoms and Random Matrices

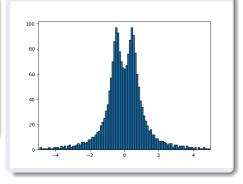
Let X, Y be freely independent semicircular random variables

Let

$$r = (x - y^{-1})^{-1} \neq 0$$

in $\mathbb{C}(x_1, \ldots, x_n)$, then $\mu_{r(X,Y)}$ is non-vanishing and has no atoms.

Let $X_{(N)}$, $Y_{(N)}$ be GUE random matrices with N = 1000



Thank you!